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概要
Richards方程式は, 多孔質媒体内の水分移動を記述する代表的な方程式の一つであり, 質量保
存則と Darcy 則から導かれる拡散方程式である. 本研究で扱う Richards 方程式は, 含水率が未
知関数に依存するため, 時間微分項が非線形であるという特徴を持つ. 筆者の以前の研究では, こ
の方程式の初期値境界値問題に対する強解の存在と一意性を示し, 有限体積法に基づく近似解の
誤差評価も導出した. 本稿では, この誤差評価の改良について報告する. なお, 本稿は愛木豊彦教
授 (日本女子大学)と荏原製作所との共同研究に基づく.

1 導入
多孔質媒体とは, 微小な孔が多数空いた構造をもつ物質である. このような物質は日常生活におい

ても身近に存在し, 岩石やスポンジ, コンクリート, 土壌などが具体例として挙げられる. 多孔質媒体
は構造が複雑であるため, その内部に浸透する水の流れは通常 (パイプ中など)とは異なる. このよう
な現象を記述する数理モデルは, これまでにいくつか提案されている [1, 5, 10]. 本研究では, 多孔質
媒体の一つであるレンガに水が浸透していく様子を記述する数理モデルを取り扱う.

Fukui–Iba–Hokoi–Ogura [4] は, レンガへの水分浸透実験を行い, その結果を Green–Dabiri–

Weinaug–Prill [6]が提唱した数理モデル (GDWPモデル)の数値シミュレーション結果と比較する
ことで, 実験的観点から GDWPモデルの妥当性を明らかにした. GDWPモデルでは, 水だけでなく
空気の流れも記述する. Fukuiらはレンガ内部の水の浸透と空気圧の関係を考えるために, 本モデル
を採用した.

以下では, Fukuiらによる実験の設定を説明する. まず, 一定の温度および湿度が保たれた実験室内
において, 乾いたレンガを用意する. レンガの上面を除く全ての面に断湿処理を施し, 上面には水層を
設置する. このとき, 時間経過によってレンガ内部に水が浸透し, 同時にレンガ内部の空気が外部へ排
出される. 水の浸透と共にレンガ上面の水量は減少するが, Fukuiらは水層の高さが一定に保たれる
よう水を注ぎ続けた. また, 浸透実験中, 空隙率 (多孔質媒体中の単位体積あたりの孔の割合)は時間
に対して不変であると仮定した.
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図 1 レンガの水分浸透実験

GDWPモデルは本来多次元モデルであるが, Fukuiらは空間の水平方向の変化が一様であると仮
定し, 空間 1次元モデルとして数値シミュレーションを行った. その際に用いられた GDWPモデル
は次の初期値境界値問題である:

∂tmw(u) + ∂xqw = 0, ∂tma(u) + ∂xqa = 0, (1)

qw = −λ(ψw(u))(∂xPw + ρwg), qa = −k(ψw(u))(∂xPa + ρag), (2)

qw(t, 0) = 0, qa(t, 0) = 0, (3)

qw(t, 1) = Cw(Pw(t, 1)− P̂w), qa(t, 1) = Ca(Pa(t, 1)− P̂a), (4)

u(0, x) = u0(x), ma(0, x) = ma0(x), (5)

Pa − Pw = −ρwu, Pa = ρaRT, ψw + ψa = ϕ, mw = ρwψw, ma = ρaψa. (6)

ここで, uは水分化学ポテンシャル; mw,ma は水と空気の質量; qw, qa は水と空気の流束; ψw, ψa は
水と空気の含有率; λ, k は水と空気の拡散係数; Pw, Pa は水と空気の圧力; ρw, ρa は水と空気の密度
を表す. さらに, ρw は定数であると仮定する. また, g,R, T, ϕ, Cw, P̂w, Ca, P̂a は与えられた正定数
である.

GDWPモデルの未知関数は水分化学ポテンシャル uと空気の質量ma である. 時間発展の支配方
程式は質量保存則 (1)であり, 流束は Darcy則 (2)に従う. 含水率 ψw, 水の拡散係数 λ, 空気の拡散
係数 k は, Fukuiらによって次の具体形が提案されている:

ψw(u) :=
0.0505

8 + exp{log10(−u)− 2}
+

0.139

1.1 + exp{2.3 log10(−u)− 4.6}
,

λ(ψw) := Dw(ψw)ψ
′
w,

Dw(ψw) :=
30.332× 10−6

ρw
exp{79.8× (ψw)

1.5},



k(ψw) :=
2.363× 10−11

ρw

{
1−

(
ψw

ϕ

)2
}
.

ここで, 含水率 ψw は u < 0に対して定義されていることに注意する.

式 (3)と式 (4)はそれぞれレンガ下面 x = 0, レンガ上面 x = 1における境界条件であり, レンガ
下面では流束が 0, レンガ上面では流束が圧力差に比例すると仮定している. また, 初期条件 (5)とし
てレンガが乾燥している状態を考えている. 他にも, 式 (6)で毛管圧の定義式や乾燥気体の状態方程
式を与えている.

Fukuiらの検証によって GDWPモデルの実験的妥当性は示されているが, GDWPモデルに対す
る解の存在やその挙動といった数学的基礎理論は十分に整備されていないのが現状である. 数学的な
理論解析を行うためには, 非線形関数が多数含まれていることや, 空気の拡散係数が水分化学ポテン
シャル uに依存していることなど, 多くの困難がある. そこで本研究では, GDWPモデルに対する数
学的基礎理論を確立するための第一段階として, 水の拡散方程式に焦点を当てた解析を行う.

質量保存則 (1)の第一式に流束 (2)の第一式を代入すると, 次の水の拡散方程式が得られる:

∂tmw = ∂x(λw(ψw)(∂xPw + ρwg)). (7)

式 (7)は Richards 方程式として知られており, 多孔質媒体中の水分輸送を記述する方程式としてこ
れまで数多く研究されてきた [2, 3, 7, 9].

一般的な Richards方程式は次の形で表される:

∂tψ = ∂x(D(ψ)∂xψ).

ここで, ψ は含水率を表す未知関数, D = D(ψ)は拡散係数を表す与えられた関数である.

[3, 9] による実験的研究から, 拡散係数 D(ψ)は ψ が小さい領域ではほぼ 0であるが, ψ がある閾
値を超えると急激に増加することが知られている (図 2を参照).

未知関数として uの代わりに ψw を考えると, 式 (7) は次の形に書き換えられる:

∂tψw = ∂x(Dw(ψw)(∂xψw + (remainder))). (8)

[4]は, 図 2に示される特性と同様の挙動をもつように, 拡散係数 Dw を具体的に定めた．実際, 図
3より, Fukuiらの拡散係数 Dw は図 2と同様のグラフを持つことが確認できる.

図 2 拡散係数 D 図 3 拡散係数 Dw



このことから, 水の拡散方程式 (7)は, 単体の方程式としても, 多孔質媒体への水分浸透を記述する
ことが期待される.

2 先行研究
2.1 問題設定
簡単のため, 式 (7) 中の重力項を除き, レンガの上面および下面の両方に流束が 0となる境界条件
を課して一般化をすると, 次の非線形放物型偏微分方程式の初期値境界値問題が得られる:

∂tψ(u) = ∂x (λ(u)∂x(u+ P )) in (0, T )× (0, 1), (9)

λ(u)∂x(u+ P ) = 0 at x = 0, 1 and for t ∈ (0, T ), (10)

u(0, x) = u0(x) for x ∈ (0, 1), (11)

ここで, T > 0, u : [0, T )×(0, 1) → Rは未知関数, ψ, λ : R → R, P : (0, T )×[0, 1] → R, u0 : (0, 1) →
Rは既知関数である. また, P (t, x) := Pa(t, x)/ρw である.

初期値境界値問題 (9)–(11)に対し, 次の変換を導入する:

v := λ̂ ◦ u, v0 := λ̂ ◦ u0, p := ∂xP, h := ψ ◦ λ̂−1, b := λ ◦ λ̂−1,

ただし,

λ̂(u) :=

∫ u

0

λ(r)dr

とする.

この変換のもとで, 初期値境界値問題 (9)–(11)は, 次の形に形式的に書き換えられる:
∂th(v) = ∂x (∂xv + b(v)p) , (t, x) ∈ (0, T )× (0, 1),

∂xv + b(v)p = 0, (t, x) ∈ (0, T )× 0, 1,

v(0, x) = v0(x), x ∈ (0, 1).

(P)

ここで, T > 0, v : [0, T )× [0, 1] → Rは未知関数, h, b : R → R, v0 : (0, 1) → R, p : (0, T )× [0, 1] →
Rは既知関数である.

2.2 強解の存在と一意性
この問題に対して, M.–Aiki [8]では, hと bに次の仮定 (A1)を課した上で強解の存在と一意性を
示した.

仮定 (A1) h, b ∈ C2(R)であり, ある正定数 ch,1, ch,2, cb,1, cb,2 が存在して

ch,1 ≤ h′ ≤ ch,2, |h′′| ≤ ch,2, cb,1 ≤ b ≤ cb,2, |b′| ≤ cb,2, |b′′| ≤ cb,2

が成り立つ.



命題 1 ([8]). T > 0とし, (A1)および

v0 ∈ H1(0, 1), p ∈W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;L∞(0, 1)) ∩ L2(0, T ;H1(0, 1))

を仮定する. このとき, (P)には強解

v ∈W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)) ∩ L2(0, T ;H2(0, 1))

がただ一つ存在する.

2.3 有限体積法による近似解の構成と誤差評価
M.–Aiki [8] では, 有限体積法によって (P) の近似解を構成し, 近似解と命題 1 で与えられる (P)

の強解の差に対する誤差評価も導出した. この結果を述べるための準備として, 本研究で用いる有限
体積法の枠組みをまとめておく.

まず, n ≥ 3 を区間 [0, 1] の分割数, ∆x(n) = 1/n を空間分割幅とする. また, 区間 [0, 1] の分割
{V (n)

i }i を次のように定義する:

V
(n)
i :=

{
[(i− 1)∆x(n), i∆x(n)), i = 1, . . . , n− 1,

[(n− 1)∆x(n), 1], i = n.

次に, 問題 (P)の第一式の両辺を V
(n)
i 上で積分すると, 次の常微分方程式系を得る:

h′(v
(n)
i )

d

dt
v
(n)
i =



1

∆x(n)

(
v
(n)
2 − v

(n)
1

∆x(n)
+ b

(
v
(n)
1 + v

(n)
2

2

)
p
(n)
1

)
, i = 1,

1

∆x(n)

(
v
(n)
i+1 − v

(n)
i

∆x(n)
+ b

(
v
(n)
i + v

(n)
i+1

2

)
p
(n)
i

−

(
v
(n)
i − v

(n)
i−1

∆x(n)
+ b

(
v
(n)
i−1 + v

(n)
i

2

)
p
(n)
i−1

))
, i = 2, . . . , n− 1,

− 1

∆x(n)

(
v
(n)
n − v

(n)
n−1

∆x(n)
+ b

(
v
(n)
n−1 + v

(n)
n

2

)
p
(n)
n−1

)
, i = n.

(12)

ただし, v
(n)
i : [0, T ) → Rは未知関数,

p
(n)
i (t) :=

1

∆x(n)

∫
V

(n)
i

p(t, x)dx

である. この常微分方程式系に次の初期条件を課した初期値問題を (OP)(n) と表す:

v
(n)
i (0) = v

(n)
0,i :=

1

∆x(n)

∫
V

(n)
i

v0(x)dx, i = 1, . . . , n.

初期値問題 (OP)(n) の解 (v
(n)
1 , . . . , v(n)n )を用いて, (P)の近似解 v(n) を

v(n)(t, x) :=

n∑
i=1

v
(n)
i (t)χ

(n)
i (x) (13)



と定義する. ただし, χ
(n)
i は V

(n)
i の特性関数である.

以上の準備のもと, 近似解 v(n) と命題 1で与えられる (P)の強解 v の差に対して次の誤差評価が
成り立つ.

命題 2 ([8]). nを n ≥ 3なる自然数, v を命題 1で与えられる (P)の強解, v(n) を式 (13)で定義さ
れる (P)の近似解とする. このとき, nに依存しない cT > 0が存在して

|v − v(n)|2L∞(0,T ;L2(0,1)) +

∫ T

0

|∂xv(t, ·)−Dxv
(n)(t, ·)|2L2(∆x(n),1)dt ≤ cT (∆x

(n))
1
2

が成り立つ. ただし,

Dxv
(n)(t, x) :=


0, 0 ≤ x < ∆x(n),

v(n)(t, x)− v(n)(t, x−∆x(n))

∆x(n)
, ∆x(n) ≤ x ≤ 1

である.

3 主結果
本稿では, 既知関数 h, b, v0, pにより強い仮定を課すことで, (P)の強解の正則性を向上させ, 命題

2で得られた誤差評価が改良できることを報告する.

仮定 (A2) h ∈ C3(R), b ∈ C2(R)であり, ある正定数 Ch,1, Ch,2, Cb,1, Cb,2 が存在して

|h| ≤ Ch,2, Ch,1 ≤ h′ ≤ Ch,2, |h′′| ≤ Ch,2, |h′′′| ≤ Ch,2,

Cb,1 ≤ b ≤ Cb,2, Cb,1 ≤ b′ ≤ Cb,2, |b′′| ≤ Cb,2

が成り立つ.

ここで, (A2) ⇒ (A1)が成り立つことに注意する.

定理 3. T > 0とし, (A2)および

v0 ∈W 3,2(0, 1), p ∈W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;W 1,∞(0, 1)) ∩ L2(0, T ;H1(0, 1))

を仮定する. このとき, 命題 1で与えられる (P)の強解 v は

∂tv ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1))

を満たす.

定理 4. 定理 3と同じ仮定のもと, nを n ≥ 3なる自然数, v を命題 1で与えられる (P)の強解, v(n)

を式 (13)で定義される (P)の近似解とする. このとき, nに依存しない CT > 0が存在して

|v − v(n)|2L∞(0,T ;L2(0,1)) +

∫ T

0

|∂xv(t, ·)−Dxv
(n)(t, ·)|2L2(∆x(n),1)dt ≤ CT∆x

(n)

が成り立つ.



4 主定理の証明
4.1 定理 3の証明
まず, ∆t > 0, w(t, x) := h(v(t, x)), δtw(t, x) := (w(t, x)− w(t−∆t, x))/∆tとおく. (P)の第一

式より従う

δt(∂tw)(t, x) = δt
(
∂2xh

−1(w)
)
(t, x) + δt

(
∂x
(
b(h−1(w))p

))
(t, x) (14)

の両辺に δtw(t, x)をかけて積分すると,

1

2

d

dt

∫ 1

0

|δtw(t, x)|2dx = −
∫ 1

0

(δt
(
∂xh

−1(w)
)
(t, x) + δt

(
b(h−1(w))p

)
(t, x))δt(∂xw)(t, x)dx.

(15)

(i) ∆t < t < T の場合
式 (15)の左辺を計算すると,∫ 1

0

δt
(
∂xh

−1(w)
)
(t, x)δt(∂xw)(t, x)dx−

∫ 1

0

δt
(
b(h−1(w))p

)
(t, x)δt(∂xw)(t, x)dx

≤ − 1

4Ch,2
|δt(∂xv)(t)|2L2(0,1) + 2Ch,2

∫ 1

0

|∂xw(t, x)|2|δt((h−1)′(w))(t, x)|dx

+ 2Ch,2

∫ 1

0

|δt(b(h−1(w)))(t, x)|2dx

=: − 1

4Ch,2
|δt(∂xv)(t)|2L2(0,1) + I1 + I2.

Gagliardo–Nirenbergの不等式より,

I1 ≤ 1

8Ch,2
|δt(∂xv)(t)|2L2(0,1) +

32C4
h,2

C6
h,1

|∂xw(t)|4L4(0,1)|δtw(t)|
2
L2(0,1)

+
4C3

h,2

C6
h,1

|∂xw(t)|2L4(0,1)|δtw(t)|
2
L2(0,1).

仮定 (A2)より,

I2 ≤
4Ch,2Cb,2|p|L∞(0,T ;L∞(0,1))

Ch,1
|δtw(t)|2L2(0,1) + 4Ch,2C

2
b,2|δtp(t)|2L2(0,1).

以上より, 次の評価を満たす正定数 C > 0が存在する:

d

dt

∫ 1

0

|δtw(t, x)|2dx+ |δt(∂xv)(t)|2L2(0,1) ≤ C(F (t)|δtw(t)|2L2(0,1) + |δtp(t)|2L2(0,1)).

ただし,

F (t) = |∂xw(t)|4L4(0,1) + 1.



(ii) 0 < t < ∆tの場合
(i)と同様の計算をするために, t < 0のときの w(t, x), p(t, x)を

w(t, x) := w0(x) + t∂xq0(x), (16)

q0(x) := ∂xh
−1(w0(x)) + b(h−1(w0(x)))p(0, x),

p(t, x) := p(0, x)

とおく. ただし, w0(x) := h(v0(x)). また, δ0t を

δ0tw(t, x) :=
(w(t, x)− w0(x))

∆t

と定義する. 式 (16)より, 式 (15)は次のように書き換えることができる:

1

2

d

dt

∫ 1

0

|δtw(t, x)|2dx

= −
∫ 1

0

δ0t
(
∂xh

−1(w) + b(h−1(w))p
)
(t, x)δ0t (∂xw)(t, x)

+
∆t− t

∆t

∫ 1

0

∂2xq0(x)δ
0
t

(
∂xh

−1(w) + b(h−1(w))p
)
(t, x)dx

=: I3 + I4.

(i)の I1, I2 と同様に計算すると,

I3 ≤ − 1

8Ch,2
|δ0t (∂xv)(t)|2L2(0,1) + CF (t)|δ0tw(t)|2L2(0,1)

+ C|δtp(t)|2L2(0,1) + C

∫ 1

0

∣∣∣∣p(t−∆t)− p(0, x)

∆t

∣∣∣∣2 dx.
また, I4 は仮定 (A2)より次のように評価できる:

I4 ≤ − 1

16Ch,2
|δ0t (∂xv)(t)|2L2(0,1) + CF (t)|δ0tw(t)|2L2(0,1) + C.

ここで,

|δt∂xw(t, x)| ≤ |δ0t (∂xw)(t, x)|+ |∂2xq0(x)|

であることに注意して計算をすると,

d

dt

∫ 1

0

|δtw(t, x)|2dx+ |δt(∂xv)(t)|2L2(0,1)

≤ C

(
F (t)|δtw(t)|2L2(0,1) + F (t) + |δtp(t)|2L2(0,1) +

∫ 1

0

∣∣∣∣p(t−∆t)− p(0, x)

∆t

∣∣∣∣2 dx
)
. (17)

(i)で得られた評価より, 式 (17)は任意の t ∈ (0, T )に対して成り立つ. したがって, Gronwallの
不等式より次の ∆tに関する一様評価が得られる.

sup
t∈(0,1)

|δtw(t)|2L2(0,1) +

∫ T

0

|δt(∂xw)(t)|2L2(0,1) dt ≤ C.



この一様評価を用いて, ∆tの部分列をとり, δtw と δt(∂xw)の極限を考えることによって

∂tv ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).

が導かれる.

4.2 定理 4の証明
関数W (n) を次で定める:

W (n)(t, x) := h′(v(n)(t, x))∂tv
(n)(t, x).

式 (12)より, 以下の式が得られる:

∂tW
(n)(t, x) =

n∑
i=1

d

dt
F

(n)
i (t)χ

(n)
i (x).

この式の両辺にW (n)(t, x)をかけて積分し計算をすると, 次の nに関する一様評価が得られる:

sup
t∈(0,1)

|W (n)(t)|2L2(0,1)) +

∫ T

0

|DxW
(n)(t)|2L2(0,1))dt ≤ C.

また, [8]より Dxv
(n) の nに関する一様評価が成り立つ:

sup
t∈(0,1)

|Dxv
(n)(t)|2L2(0,1)) ≤ C.

式 (12)を変形して計算すると, 任意の n ≥ 3と t ∈ [0, T ]に対して∣∣∣∣Dxv(t, ·+∆x(n))−Dxv(t, ·)
∆x(n)

∣∣∣∣
L2(∆x(n),1−∆x(n))

≤ 2|W (n)(t)|2L2(0,1)) + C|Dxv
(n)(t)|2L2(0,1)) + C.

ここで, 任意の i, j = 0, . . . , nに対し,

|Dxv
(n)(t, i∆x(n))| ≤

∣∣∣∣Dxv(t, ·+∆x(n))−Dxv(t, ·)
∆x(n)

∣∣∣∣
L2(∆x(n),1−∆x(n))

+ |Dxv
(n)(t, j∆x(n))|.

この式の両辺に ∆x(n) をかけ, j に関して和を取ると任意の i = 0, . . . , nに対して

|Dxv
(n)(t, i∆x(n))| ≤ C|Dxv

(n)(t)|2L2(0,1)) + C.

したがって, 次の評価が得られる:

|Dxv
(n)|L∞(0,T ;L∞(0,1)) ≤ C.

この評価と, 定理 3を組み合わせることで, 定理 4が示される.
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